Система vvti что это такое?

Датчик VVTI что это?

Система vvti что это такое?

Клапан VVT-I (ВиВиТи-Ай)  служит для снижения расхода топлива примерно на 6%, увеличения мощности более чем на 10%, количество выхлопных газов снижается на 40%.  При его неисправности соответственно мощность падает, расход возрастает.

Время открытия и закрытия клапанов называется фазами газораспределения. На обычном двигателе клапана  открываются не в момент достижения поршня вмт или нмт, Есть т.н. запаздывание впуска. На низких оборотах:  — запаздывание впуска минимальное, таким образом нет необходимости открывать и закрывать впускной клапан до ВМТ и  НМТ.

Если впускной клапан открывается до ВМТ — это может вызвать засасывание выхлопных газов во впускной коллектор или обратный выпуск  воздушно топливной смеси. На больших оборотах:  — сопротивление впуску возрастает, т.е. впуск топливно-воздушной смеси в цилиндр не успевает за движением поршня, вызывая большое запаздывание впуска. Чтобы разрешить эту проблему, на больших оборотах, впускной клапан должен открываться раньше — перед ВМТ.

И закрываться позже после НМТ. Эту проблему решает механизм газораспределения с изменяемыми фазами VVN-I.

Эбу использует три типа сигнала:  начальный этап, когда дроссельная заслонка полностью открыта, фиксированный — когда двс набрал мощность. и когда заслонка полностью закрыта, при этом масло подается по разным каналам направление подачи меняется на противоположное

Проверка VVT-i: 

  1. Проверяем фазы ГРМ.  Устанавливаем поршень первого цилиндра в ВМТ такта сжатия. Затем проверяем совмещаются ли установочные метки распредвалов. Если метки не совмещаются необходимо отрегулировать фазы ГРМ. Если метки совмещаются переходим к пункту 2.
  2. Проверка клапана управления VVT-i. Заводим двигатель и прогреваем его до рабочей температуры. Подключаем тестер TOYOTA, меняем фазы ГРМ — отмечаем при этом обороты двигателя. Если двигатель работает нормально, когда клапан выключен, а хх становится нестабильным, или двигатель глохнет когда клапан управления включен — то механизм VVT-i работает нормально. Нужно искать причину неисправности в другом месте. Если клапан управления VVT-i функционирует неправильно вы должны проверит компьютер двигателя. Подсоединяем осциллограф к контактам OCV + OCV — компьютера. Увеличиваем обороты двигателя, продолжительность сигналов должна увеличиваться с ростом оборотов. Если форма управляющих сигналов ненормальная — необходимо проверить или заменить  ЭБУ. Процедура проверки без тестера приведены в руководствах соответствующих моделей. Если форма сигналов нормальная переходим к п.3
  3. Проверяем масляные каналы клапана VVT-i. Вынимаем клапан — промываем каналы от шестерни до клапана и сам клапан. 

Что происходит когда обрыв или короткое замыкание цепи управления,  или выдавливает масло из под клапан. В этом случая клапан выключен. Фазы газораспределения фиксируются в наиболее позднем положении. В этом случае будет наблюдаться падение мощности если вы до конца нажимаете педаль акселератора. Кроме того фазы газораспределения фиксируются в наиболее позднем положении  после выключения двигателя и в момент его запуска. Облегчается запуск двигателя.  

ВНИМАНИЕ: шестерни VVT-i должны заменяться в сборе.   

— при 20°С сопротивление от 6.9 — 7.9 Ом ( мой выдал 8.4 Ом)

 Примечание: Max сопротивление обмотки при 20С равно 7,9 Ом.при 30С 7,9*[1+0,004(30-20)]=7,9*1,04=8,22 Омпри 80С 7,9*[1+0,004(80-20)]=7,9*1,24=9,80 Ом

— при отключении исправного клапана обороты холостого хода должны быть нестабильными, или машина должна заглохнуть.

— если клапан исправен, а машина работает неправильно — проверяем компьютер. 

— если компьютер выдает сигналы нормально, — проверяем масляные каналы клапана VVTi

Если промывка клапана ничем не помогла. Нужна замена клапана на новый. Промывка помогает лишь в случае очень плохого масла, что бывает редко, если менять масло хотя бы каждые 15 тысяч км. Шток может перемещаться на холодную, но на горячую клинить.

Источник: https://www.sites.google.com/site/japanoilplatz/klapan-vvt-i

Как проверить клапан vvti

Эта запись в продолжение темы о разборе и дефектовки контроллера VVT-i (Ерундовый Блог. Муфта VVT-i). А точнее это скорее всего предистория. Так как сначала нужно диагностировать поломку, а потом что либо дефектовать, разбирать и чинить.
В свое время, мне достаточно часто приходилось отвечать на вопросы, касающиеся работоспособности VVTL или VVT, об ошибках P1349, P1693 и т.д.

Вдруг у Вас загорелась ошибка советующая выкинуть двигатель (Check Engine), но ничего особенного не происходит, машина как ехала так и ехала, только со временем приходит осознание того, что она стала больше есть топлива, и менее приёмиста на средних оборотах.Считав ошибку, допустим что Вы получили одну из самых распространенных ошибок VVT этоP1349 или P1346

Если P1349 — прямо намекает на дефект механизма VVT, то P1346 сигнализирует об ошибке связанной с датчиком определения положения распредвала, но так или иначе, может говорить, о нарушениях в работе VVT, например неверных Фазах ГРМ.

Диагностика.В первую очередь необходимо определить Какой именно из узлов делает нам мозг.Рассмотри основные 3 механических неисправности

Читайте также  Система dohs что такое?

1. Фильтр клапана VVT

Банальная сеточка, но она может быть немного грязной )

и тем самым приводить к нарушению работы системы VVT2. OCV VALVE, он же VVT Solenoid, он же клапан VVT

Достаточно нежный прибор, представляющий из себя несколько портовый Соленоид, перепускающий масло в тот или иной канал (на опережение или запаздывание вала).Многие люди предполагают, что он работает и управляется по алгоритму «открыл» — «закрыл» — «удержал давление»Не совсем так. VVT клапан управляется ECU по ШИМ, причем делается это непрерывно.

Вот как работает клапан в двигателе

Хоть устройство клапана банальное, но работая в агрресивной среде часто страдают слабые места, например деформация уплотнительного кольца, приводит в залипанию штока, или же ослабление возвратной пружины, не возвращает клапан в первоначальное положение.И так… диагностируем.

Берем 2 провода желательно с коннекторами

Подключаем к клапану и к аккумулятору, второй полюс пока не соединяем

Замыкаем второй провод на плюс (без фанатизма, короткими замыканиями, можно спалить обмотку) и слушаем

Щелкает ходит туда сюда… Если не щелкает… то тоже в принципе все понятно.Однако, небольшая поправочка. Этот клапан может прекрасно работать когда вы снимите его из двигателя, но не работать в самом двигателе.Это связано с тем, что клапан может клинить только в нагретом состоянии.

Поэтому перед этим тестом, прогрейте двигатель до рабочей температуры…

3. Муфта VVTДопустим клапан рабочий. Следующий Тест — это активация контроллера VVT. Так же можно осуществить без наличия диллерского сканера.

Заводим двигатель, и подаем на клапан VVT напряжение

Если в работе двигателя не происходит никаких изменений… То контроллер VVT скорее мертв чем жив )Что должно было произойти?

Подавая напряжение, вы открываете канал, который приводит Муфту VVT в положение соответствующее максимальному перекрытию впускных и выпускных клапанов.

На холостом ходу, двигатель не может работать с таким перекрытием, так как увеличивается прорыв выхлопных газов во впуск. И двигатель глохнет.

Если давление масла в системе достаточно… то механически там просто больше нечему ломаться.

Проводка, электроника, фазы ГРМ и датчик положения распредвала.
при P1346 следует проверить, правильно ли выставлены метки фаз ГРМ, а так же работоспособность датчика, целостность проводки, нет ли окисления в разъемах… Ну и самое плохое и туго диагностируемое — это ECU…

Принцип работы системы

Принцип действия системы VVT-I способствует плавному изменению фазы газораспределения, в зависимости от условий работы силового агрегата. Это происходит за счет поворота распредвала впускных клапанов по отношению к приводящей шестерне в пределах от 40 до 60 градусов.

Привод VVT, оснащенный лопастным ротором, монтируется на впускном валу. Если мотор находится в состоянии покоя, то нормальный запуск обеспечивается специальным фиксатором, удерживающем распределительный вал в положении максимальной задержки.

1 — управляющий клапан VVT-i, 2 — датчик положения распредвала, 3 — датчик температуры охлаждающей жидкости, 4 — датчик положения коленвала, 5 — привод VVT

За счет электромагнитного клапана, управляемого электронным блоком, осуществляется регулировка подачи масла в полости задержки и опережения привода VVT. Информация по дозировке подаваемого масла берется от сигналов датчика положения распределительных валов. Максимальный угол задержки на заглушенном моторе, создается благодаря золотнику, который перемещается специальной пружиной.

Команды на электромагнитный клапан поступают от блока управления двигателем. В зависимости от конкретного режима мотора, может происходить следующее:

  • клапан переходит в режим опережения и сдвигает золотник управляющего механизма. При этом поток масла направляется к ротору со стороны полости опережения, поворачивая распределительный вал;

Движение масла внутри клапана и муфты VVT-I

  • клапан переходит в режим задержки и перемещает золотник управляющего механизма. При этом поток масла направляется к ротору со стороны полости задержки, что приводит к вращению распредвала в туже сторону;
  • удержания клапана в нейтральном положении при отсутствии изменений.

Источник: https://izst-detail.ru/datchik-vvti-chto-eto/

Фазовращатель в ДВС. Что это такое и основной принцип работы. Разберем VVT, VVT-i, CVVT, VTC, VANOS, VTEC и прочие

Система vvti что это такое?

Эффективность двигателя внутреннего сгорания зачастую зависит от процесса газообмена, то есть наполнения воздушно-топливной смеси и отвода уже отработанных газов. Как мы уже с вами знаем, этим занимается ГРМ (газораспределительный механизм), если правильно и «тонко» настроить его, под определенные обороты, можно добиться очень неплохих результатов в КПД. Инженеры давно бьются над этой проблемой, решать ее можно различными способами — например воздействием на сами клапана или же поворотом распределительных валов …

Чтобы клапана ДВС работали всегда правильно и не были подвержены износу, вначале появились просто «толкатели», затем гидрокомпенсаторы, но этого оказалось мало, поэтому производители начали внедрение так называемых «фазовращателей» на распределительные валы.

Зачем вообще нужны фазовращатели?

Чтобы это понять что такое фазовращатели и зачем они нужны, прочтите для начала, полезную информацию ниже. Все дело в том, что двигатель работает не одинаково на различных оборотах. Для холостых и не высоких оборотов идеальными будут «узкие фазы», а для высоких – «широкие».

Узкие фазы – если коленчатый вал вращается «медленно» (холостой ход), то объем и скорость отвода отработанных газов также невелики.

Именно здесь идеально применять «узкие фазы», а также минимальное «перекрытие» (время одновременного открытия впускных и выпускных клапанов) – новая смесь не проталкивается в выпускной коллектор, через открытый выпускной клапан, но и соответственно отработанные газы (почти) не проходят во впускной. Это идеальное сочетание.

Читайте также  Система gdi принцип работы

Если же сделать «фазирование» — шире, именно при невысоких вращениях коленчатого вала, то «отработка» может смешаться с поступающими новыми газами, снизив тем самым ее качественные показатели, что однозначно снизит мощность (мотор станет неустойчиво работать или даже заглохнет).

Широкие фазы – когда обороты растут, соответственно растет и объем и скорость перекачиваемых газов. Здесь уже важно быстрее продувать цилиндры (от отработки) и быстрее загонять в них поступающую смесь, фазы должны быть «широкими».

Конечно же руководит открытиями обычный распределительный вал, а именно его «кулачки» (своеобразные эксцентрики), у него есть два конца – один как бы острый, он возвышается, другой просто сделан полукругом. Если конец острый — то происходит максимальное открытие, если округлый (с другой стороны) – максимальное закрытие.

НО у штатных распределительных валов – НЕТ регулировки фаз, то есть они их не могут расширить или сделать уже, все же инженеры задают усредненные показатели – что-то среднее между мощностью и экономичностью. Если завалить валы в одну из сторон, то эффективность, либо экономичность двигателя упадет. «Узкие» фазы, не дадут ДВС развивать максимальную мощность, а вот «широкие» — не будет нормально работать на малых оборотах.

Вот бы регулировать в зависимости от оборотов! Это и было изобретено – по сути это и есть система регулирования фаз, ПО ПРОСТОМУ — ФАЗОВРАЩАТЕЛИ.

Принцип работы

Сейчас не будем лезть вглубь, наша задача понять, как они работают. Собственно обычный распредвал на конце имеет распределительную шестерню, которая в свою очередь соединяется с ремнем или цепью ГРМ.

Распредвал с фазовращателем на конце имеет немного другую, измененную конструкцию. Здесь располагаются две «гидро» или электроуправляемые муфты, которые с одной стороны также зацепляются за привод ГРМ (цепь или ремень), а с другой стороны с валами. Под воздействием гидравлики или электроники (есть специальные механизмы) внутри этой муфты могут происходить сдвиги, таким образом, она может немного поворачиваться, тем самым меняя открытие или закрытие клапанов.

Нужно отметить, что не всегда фазовращатель устанавливается на два распредвала сразу, бывает что один находится на впускном или на выпускном, а на втором просто обычная шестерня.

Как обычно процессом руководит ЭБУ, которая собирает данные с различных датчиков двигателя, таких как положения коленчатого вала, холла, частота вращения двигателя, скорости и т.д.

Сейчас я вам предлагаю рассмотреть основные конструкции, таких механизмов (думаю так у вас больше проясниться в голове).

VVT (Variable Valve Timing), KIA-Hyundai (CVVT), Toyota (VVT-i), Honda (VTC)

Одними из первых предложили поворачивать коленвал (относительно начального положения), компания Volkswagen, со своей системой VVT (на ее основе построили свои системы много других производителей)

Что в нее входит:

Фазовращатели (гидравлические), установлены на впускном и выпускном валу. Они подключены к системе смазки мотора (собственно это масло и закачивается в них).

Если разобрать муфту то внутри есть специальная звездочка наружного корпуса, которая неподвижно соединена с валом ротора. Корпус и ротор при накачивании масла могут смещаться относительно друг друга.

Механизм закрепляется в головке блока, в ней есть каналы для подводки масла к обеим муфтам, контролируются потоки двумя электрогидравлическими распределителями. Они кстати также закрепляются на корпусе головки блока.

Помимо этих распределителей в системе много датчиков – частоты коленчатого вала, нагрузки на двигатель, температуре охлаждающей жидкости, положения распред и колен валов. Когда нужно повернуть откорректировать фазы (например — высокие или низкие обороты), ЭБУ считывая данные дает приказания распределителям подавать масла в муфты, они открываются и давление масла начинает накачивать фазовращатели (тем самым они поворачиваются в нужную сторону).

Холостой ход – поворачивание происходит таким образом, чтобы «впускной» распредвал обеспечил более позднее открытие и позднее закрытие клапанов, а «выпускной» разворачивается так  — чтобы клапан закрывался намного раньше до подхода поршня в верхнюю мертвую точку.

Получается, что количество отработанной смеси снижается почти до минимума, причем она практически не мешает на такте впуска, это благоприятно сказывается на работе мотора на холостых оборотах, его стабильности и равномерности.

Средние и высокие обороты – здесь задача выдать максимальную мощность, поэтому «поворачивание» происходит таким образом, чтобы задержать открытие выпускных клапанов. Таким образом, остается давление газов на такте рабочего хода. Впускные в свою очередь открываются после достижение поршня верхней мертвой точки (ВМТ), и закрываются после НМТ. Таким образом, мы как бы получаем динамический эффект «дозарядки» цилиндров двигателя, что несет за собой увеличение мощности.

Максимальный крутящий момент – как становится понятно, нам нужно как можно больше наполнять цилиндры. Для этого нужно намного раньше открывать и соответственно намного позже закрывать впускные клапана, сберечь смесь внутри и не допустить ее выхода обратно в впускной коллектор. «Выпускные» же в свою очередь, закрываются с некоторым опережением до ВМТ, чтобы оставить небольшое давление в цилиндре. Думаю это понятно.

Таким образом, сейчас работает много похожих систем, из них самые распространенные Renault (VCP), BMW (VANOS/Double VANOS), KIA-Hyundai (CVVT), Toyota (VVT-i), Honda (VTC).

НО и эти не идеальные, они могут только смещать фазы в одну или другую сторону, но не могут реально «сузить» или «расширить» их. Поэтому сейчас начинают появляться более совершенные системы.

Honda (VTEC),  Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL)

Чтобы дополнительно регулировать поднятие клапана, были созданы еще более продвинутые системы, но родоначальницей была компания HONDA, со своим мотором VTEC (Variable Valve Timing and Lift Electronic Control). Суть в том, что кроме изменения фаз, эта система может больше поднимать клапана, тем самым улучшая наполнение цилиндров или отвод отработанных газов. У HONDA сейчас используется уже третье поколение таких моторов, которые впитали в себя сразу обе системы VTC (фазовращатели) и VTEC (поднятие клапана), и сейчас она называется – DOHC i-VTEC.

Читайте также  Диагностика топливной системы дизельного двигателя

Система еще более сложная, она имеет продвинутые распредвалы в которых есть совмещенные кулачки. Два обычных по краям, которые нажимают на коромысла в обычном режиме и средний более выдвинутый кулачок (высокопрофильный), который включается и нажимает клапана скажем после 5500 оборотов. Эта конструкция имеется на каждую пару клапанов и коромысел.

Как же работает VTEC? Примерно до 5500 об/мин мотор работает в штатном режиме, используя только систему VTC (то есть крутит фазовращатели). Средний кулачок как бы не замкнут с двумя другими по краям, он просто вращается в пустую.

И вот при достижении высоких оборотов, ЭБУ дает приказание на включение системы VTEC, начинает закачиваться масло и специальный штифт выталкивается вперед, это позволяет замкнуть все три «кулачка» сразу, начинает работать самый высокий профиль – теперь именно он давит пару клапанов, на которые рассчитана группа.

Таким образом, клапан опускается намного больше, что позволяет дополнительно наполнить цилиндры новой рабочей смесью и отвести больший объем «отработки».

Стоит отметить, что VTEC стоит и на впускном и выпускном валах, это дает реальное преимущество и прирост мощности на высоких оборотах. Прирост примерно в 5 – 7%, это очень хороший показатель.

Стоит отметить, хотя ХОНДА была первой, сейчас похожие системы используются на многих автомобилях, например Toyota (VVTL-i), Mitsubishi (MIVEC), Kia (CVVL). Иногда как например в моторах Kia G4NA, используется лифт клапанов только на одном распредвалу (здесь только на впускном).

НО и у этой конструкции есть свои недостатки, и самый главный это ступенчатое включение в работу, то есть едите до 5000 – 5500 и дальше чувствуете (пятой точкой) включение, иногда как толчок, то есть нет плавности, а хотелось бы!

Плавное включение или Fiat (MultiAir), BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic)

Хотите плавности пожалуйста, и тут первой в разработках была компания (барабанная дробь) – FIAT. Кто бы мог подумать, они первые создали систему MultiAir, она еще более сложная, но более точная.

«Плавная работа» здесь применена на впускных клапанах, причем распредвала здесь вообще нет. Он сохранился только на выпускной части, но он имеет воздействие и на впуск (наверное запутал, но постараюсь объяснить).

Принцип работы. Как я сказал, здесь есть один вал, и он руководит и впускными и выпускными клапанами. ОДНАКО если на «выпускные» он воздействует механически (то есть банально через кулачки), то вот на впускные воздействие передается через специальную электро-гидравлическую систему.

На валу (для впуска) есть что-то типа «кулачков», которые нажимают не на сами клапана, а на поршни, а те передают приказания через электромагнитный клапан на рабочие гидроцилиндры открывать или закрывать. Таким образом, можно добиться нужного открытия в определенный период времени и оборотов.

При малых оборотах, узкие фазы, при высоких – широкие, и клапан выдвигается на нужную высоту ведь здесь все управляется гидравликой или электрическими сигналами.

Это позволяет сделать плавное включение в зависимости от оборотов двигателя. Сейчас такие разработки есть также у многих производителей, таких как — BMW (Valvetronic), Nissan (VVEL), Toyota (Valvematic). Но и эти системы не идеальны до конца, что опять не так? Собственно здесь опять же есть привод ГРМ (который забирает на себя около 5% мощности), есть распредвал и дроссельная заслонка, это опять забирает много энергии, соответственно крадет КПД, вот бы от них отказаться.

FreeValve

Отказ полностью от валов, дросселя и привода ГРМ (цепь или ремень) выносят многие производители, но первыми сделали это Шведы в своем суперкаре Koenigsegg, который кстати развивает аж 1500 л.с.

Как это устроено? Вместо валов здесь находятся специальные электромагнитные актуаторы, в которых встроены пневматические пружины. ЭБУ контролирует каждый такой клапан и способна открывать и закрывать его очень быстро (до 100 раз в секунду) и на любое расстояние которое нужно. Это позволяет регулировать фазы на любое заданное значение! И ЭТО РЕАЛЬНО ОЧЕНЬ КРУТО.

Испытания показали, что такой мотор до 30% мощнее и эффективнее чем аналоги с распределительной системой, а также он экономичен на эти же 30%. Плавность хода здесь на высоте.

Минусом пока является что такой мотор, шумный, такое количество электромагнитных клапанов создает щелканье при открытие, причем оно нарастает при повышении оборотов. Также стоимость агрегата пока очень высока, но если его запустить в серию цена может значительно упасть.

Что же вот мы с вами и рассмотрели основные виды фазовращателей и просто систем газораспределения без них. Кто не особо понял посмотрите видео версию, там я постараюсь рассказать все просто и на пальцах.

НА этом заканчиваю, думаю, моя статья была для вас полезна, подписывайтесь на наш сайт и канал , искренне ваш АВТОБЛОГГЕР.

(41 , 4,63 из 5)

Источник: http://avto-blogger.ru/dv/fazovrashhatel-v-dvs.html