Содержание
- 1 Одноцилиндровый четырехтактный двигатель — как он работает
- 2 Строение двигателей
- 2.1 Четырёхтактный двигатель
- 2.2 Двухтактный двигатель
- 2.3 Четырёхтактный дизельный двигатель
- 2.4 Роторно-поршневой двигатель внутреннего сгорания (двигатель Ванкеля)
- 2.5 Двигатель на CO2
- 2.6 Реактивные двигатели
- 2.7 Ракетный двигатель
- 2.8 Турбореактивный двигатель
- 2.9 Турбовинтовой двигатель
- 2.10 Турбовентиляторный двигатель
Одноцилиндровый четырехтактный двигатель — как он работает
Последнее время автолюбители на свои машины стали устанавливат ьодноцилиндровые четырехтактные двигатели, в чем причина? Двигатель такого типаможно либо найти и купить через интернет, либо приобрести (за немалую цену) в специализированном автомагазине. К чему же такие расходы, и чем он лучше обычного, многоцилиндрового, двигателя.
Как работает одноцилиндровый четырехтактный двигатель?
Эти моторы распространены довольно широко как в автомобилях, так и в других транспортных средствах, таких как мотоциклы, тракторы, мопеды. Кроме того, в Китае выпускают одноцилиндровые движки объемом 1,03 литра, которые применяются для привода тяжелых мотоблоков. Главными достоинствами можно назвать наименьшее отношение площади цилиндра к рабочему объему, поэтому потери тепла минимальные, а индикаторный КПД достаточно высокий.
Мотоциклы и мопеды, так же тракторы, давно «бегают» на таком типе двигателя, а в Китае он разработан даже для тяжеленных мотоблоков. Суть в том, что отношение площади такого цилиндра к рабочему объему очень мало, а это значит, что потерь тепла практически нет, при этом КПД индикаторный у него неимоверно большой. Его устройство одинаковое для бензинового и для дизельного движка.
Есть две мертвые точки, одна нижняя, и вторая верхняя, и есть коленчатый вал, поршень и клапана. Из своей первой позиции, а это верхняя мертвая точка, поршень, под действием коленвала, смещается ко второй позиции, и это нижняя мертвая точка, и впускной клапан открывается. Образуется сильное разряжение и всасывается горючая смесь.
Она смешивается с продуктами сгорания (вернее, их остатками) и получается рабочая смесь. Это первый такт.
Затем идет следующий такт, он называется сжатие. Наш лучший друг поршень опять идет в верхнюю точку, клапаны (оба) полностью закрыты и это сжимает рабочую смесь. Сжимаясь, она резко поднимает температуру, а с ней и давление.
Пришла пора третьего такта (или акта) – искра зажигания воспламеняет рабочую смесь, при этом и температура, и давление еще больше повышаются, эта смесь сгорает. От этого опускается поршень, идет сильный толчок шатуна, и он действует на коленвал. Вот и произошло превращение тепловой и ненужной нам энергии в нужную, и полезную, механическую.
Одновременно открывается выпускной клапан, температура, а с ней и давление резко снижаются. Отработанные газы теперь через этот клапан идут сначала в глушитель, а потом уходят в атмосферу.
Какие капризы имеет одноцилиндровый дизельный двигатель?
Так как одноцилиндровый дизельный двигатель во время работы создает высокие температуры, то его трущиеся детали, создающие пары, нуждаются в охлаждении и хорошей смазке. А зазоры между ними необходимо периодически промывать, дабы удалить ненужные продукты механического износа. Кроме того, масло еще и обеспечивает отвод тепла от нагруженных поверхностей. Отсюда следует, что поддерживать хороший уровень качественного масла в таком автомобиле необходимо
Чтобы не допустить перегрев труженика и вовремя охладить элементы головок движка и гильзы цилиндров, применяют дополнительно систему охлаждения, она может быть как воздушной, так и жидкостной. В данных системах устанавливают термостаты, чтобы обеспечить стабильную рабочую температуру. Когда все эти узлы работают четко, ваша машина выдает максимально эффективную жизнедеятельность, пользоваться – одно удовольствие. Но отсюда можно сказать и о существенном дискомфорте при каких-либо поломках, это становится заметно резко.
Процесс работы четырехтактного двигателя совершается за четыре хода поршня или за два оборота коленчатого вала, т. е. рабочий ход происходит только через два оборота вала. Одноцилиндровые двигатели внутреннего сгорания высоких мощностей тяжелы, тихоходны и имеют весьма большие размеры.
Это объясняется сравнительно редким поступлением рабочего усилия на вал, благодаря чему для получения необходимой мощности требуется очень большое рабочее усилие. Для этого приходится увеличивать размеры поршня, цилиндра, маховика и других деталей. Вместе с размерами растет вес, что затрудняет получение большого количества оборотов в минуту. Редкие и большие рабочие усилия для создания необходимой равномерности вращения вала требуют постановки очень большого маховика. Поэтому одноцилиндровые двигатели не отвечают требованиям, предъявляемым к автомобилю и трактору, применяются, главным образом, в стационарных условиях.
Балансировка одноцилиндрового двигателя
Исторически, проектировщики двигателей использовали термины первичная балансировка и вторичная балансировка. Эти термины связаны с порядком возникновения проблем в процессе разработки, и потому в какой-то степени отражают важность этих аспектов в балансировке.Определения первичной и вторичной балансировок разнятся. В общем случае первичная балансировка связана с компенсированием момента движущихся поршней (но не их кинетической энергии) во время оборота коленвала. Вторичная балансировка связана с компенсированием (или отсутствием таковой):
— кинетической энергии поршней;
— несинусоидального движения поршней (иногда является частью первичной балансировки);
— поперечного движения коленвала и балансируещего вала;
— различных паразитных качаний (моментов инерции), создаваемых балансируемыми массами, как например нежелательный сдвиг оппозитных цилиндров в «оппозитнике», создаваемые конфигурацией коленвала.
Одноцилиндровый двигатель порождает три вида вибраций (предполагается, что цилиндр расположен вертикально).Во-первых, без балансирующих противовесов в двигателе будут присутствовать значительные вибрации, порожденные изменением направления движения поршня и шатуна за каждый оборот. Это порождает силу инерции 1-го порядка, которая вызывает вертикальную вибрацию с частотой, равной частоте вращения коленвала. Практически все одноцилиндровые двигатели снабжены балансирующими массами на коленвале для уменьшения этой вибрации.
Хотя эти балансиры устраняют вибрации на коленвале, они не могут полностью сбалансировать движение поршня по двум причинам. Первая причина состоит в том, что балансиры двигаются как по вертикали, так и по горизонтали, поэтому компенсирование вертикального движения поршня массой коленвала порождает горизонтальные вибрации. Массу балансиров подбирают таким образом, чтобы уменьшить вертикальную силу инерции 1-го порядка в два раза, при этом вертикальная и горизонтальная силы инерции становятся равными по величине и, складываясь, образуют круговую силу инерции, вектор которой вращается в сторону, противоположную вращению коленвала.
Вторая причина относится к движению шатуна, который из-за конструкции заставляет поршень двигаться в верхней половине цилиндра быстрее, чем в нижней. Это порождает вертикальную силу инерции 2-го порядка, которая вызывает вибрацию с удвоенной частотой вращения коленвала. Поэтому синусоидальное движение коленвала не может полностью скомпенсировать движение поршня.
Полностью круговую силу 1-го порядка можно уравновесить двумя балансирующими валами, которые должны располагаться симметрично по бокам коленвала и вращаться в направлении, противоположном направлению вращения коленвала.
Противовесы этих валов должны быть одинаковыми и ориентированы так, чтобы создавать такую же по величине круговую силу инерции, но в противоположном направлении.
Вертикальную силу инерции 2-го порядка можно уравновесить двумя балансирующими валами, расположенными симметрично по бокам двигателя и вращающимися в противоположные друг относительно друга стороны в два раза быстрее коленвала. Балансирующие массы этих валов также должны быть одинаковыми и ориентированы так, чтобы создавать уравновешивающую вертикальную силу инерции в противоположном направлении. Однако это ведёт к значительному усложнению двигателя, поэтому как правило силу 2-го порядка оставляют неуравновешенной, к тому же она значительно меньше силы инерции 1-го порядка.
Во-вторых, существуют вибрации, порожденные изменением в скорости и кинетической энергии поршня. Так, коленвал будет замедляться, когда поршень ускоряется и поглощает энергию, и будет ускорятся, когда поршень замедляется и отдает энергию в верхней и нижней точке.
Эта вибрация имеет удвоенную частоту по сравнению с частотой вращения коленвала, и её поглощение —- задача маховика.Третий тип вибраций происходит из-за того, что двигатель отдает мощность только во время рабочего хода.
В четырехтактном цикле эта вибрация будет на половине частоты первого типа вибраций, так как горючая смесь сгорает каждый второй оборот коленвала. Поглощение этого типа вибраций тоже задача маховика.
Осуществляем ремонт одноцилиндрового четырехтактного двигателя
Ремонт такого двигателя иногда можно осуществить и самостоятельно, если речь идет о не очень серьезных повреждениях. Таким образом, если вы услышали характерные стуки, возникшие в головке цилиндра, вполне возможно, что необходима регулировка зазоров в газораспределительном механизме. Как раз эту операцию можно произвести своими руками, правда, если вы хоть приблизительно знакомы с устройством моторов.
Осуществлять регулировку лучше всего на снятом двигателе, естественно после его остывания. Действовать необходимо следующим образом. Сначала снять свечу зажигания и крышку головки цилиндра, а с левой стороны головки цилиндра нужно снять круглую крышку, таким образом, можно увидеть установочные метки ГРМ. Отворачиваем пробку с левой крышки генератора и получаем доступ к гайке крепления ротора. Поворачивая данную гайку ключом, мы поворачиваем и коленчатый вал. Эту несложную операцию мы производим до того момента, как метки ГРМ наконец совпадут.
Затем, вставляя плоские щупы в зазоры между регулировочным винтом и клапаном, регулируем их величину. Достигнув нужного положения, сворачиваем нашу «кухню», и можно все собрать в обратной последовательности. Запустите мотор и послушайте, все ли посторонние звуки удалось устранить. Если да, то оставляем автомобиль в покое, если нет, возможно, причина не в этом. Скорее всего, поломки двигателя носят более серьезный характер, следует немедленно обратиться к специалистам.
Подписывайтесь на наши ленты в таких социальных сетях как, , , Instagram, Pinterest, Yandex Zen, и Telegram: все самые интересные автомобильные события собранные в одном месте.
Источник: https://auto.today/bok/2440-odnocilindrovyy-chetyrehtaktnyy-dvigatel.html
Строение двигателей
Недавно наткнулся на прекрасный сайт (англ.), который по полочкам размусоливает и показывает строение большинства типов двигателей. Попытаюсь вольно и сжато пересказать самое на мой взгляд главное, совсем по пальцам и как для самых маленьких. Конечно можно было бы позаимствовать точные определения из авторитетных источников, но такой любительский перевод обещает быть единственным в своем роде 🙂 А можете ли Вы сходу объяснить Вашей девушке, в чем отличие бензинового двигателя от дизельного? Четырёхтактного и двухтактного движков? Нет? Тогда приглашаю под кат.
Четырёхтактный двигатель
Работающий четырёхтактный двигатель впервые был представлен немецким инженером Николаусом Отто в 1876, с этих пор он также известен под названием цикл Отто. Но все же корректнее называть его четырёхтактным. Четырёхтактный двигатель является, наверное, одним из самых распространенных типов двигателей в наше время. Он используется почти во всех автомобилях и грузовиках.
Под четырьма тактами подразумеваются: впуск, сжатие, рабочий ход, и выпуск. Каждый такт соответствует одному ходу поршня, вследствие этого рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала.
Впуск
Во время впуска поршень двигается вниз, втягивая свежую порцию воздушно-топливной смеси через впускной клапан. Отличительной особенностью рассматриваемого двигателя являтся то, что впускной клапан открывается за счет вакуума, образовавшегося в результате движения поршня вниз.
Сжатие
Крутящий момент подымает поршень, а тот в свою очередь сжимает воздушно-топливную смесь. Впускной клапан закрывается возрастающей силой давления, возникшей в результате поднятия поршня.
Рабочий ход
В верхней точке такта сжатия искра воспламеняет сжатое топливо. При сгорании топлива высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз.
Выпуск
Когда поршень достигает свою нижнюю точку, выпускной клапан открывается и выхлопные газы выгоняются из цилиндра движущимся наверх поршнем.
Двухтактный двигатель
В двухтактном двигателе рабочий процесс в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе происходят так же, как и в четырехтактном, но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мертвой точки, с помощью вспомогательного агрегата — продувочного насоса.
Wiki Так как в двухтактном двигателе на каждое движение коленчатого вала приходится один рабочий ход — двухтактные двигатели всегда мощнее четырехтактных (если брать двигатели одинакового объема). Важным фактором в пользу первых является их более простая и легкая конструкция. Эти двигатели получили распространение в бензо-пилах, лодочных моторах, снегоходах, легких мотоциклах и моделях самолетов.
Бесспорными минусами данного типа двигателей являются их неэкономичность, так как значительная доля топлива не выгорает и выбрасывается вместе с выхлопными газами.
Впуск
Воздушно-топливная смесь всасывается в кривошипную камеру благодаря ваккууму, который создается во время движения поршня вверх.
Сжатие в камере сгорания
Во время сжатия впусковой клапан закрывается давлением в кривошипной камере. Топливная смесь сжимается на последней стадии такта.
Движение топливной смеси/выпуск
Ближе к концу такта, поршень заставляет сжатую воздушно-топливную смесь двигаться по впускному каналу из кривошипной камеры в главный цилиндр. Воздушно-топливная смесь вытесняет выхлопные газы, которые покидают главный цилиндр через выпускной клапан. К сожалению, цилиндр также покидает некоторое количество невыгоревшего топлива, из-за чего конструкция двухтактного двигателя считается менее экономичной.
Сжатие
После чего поршень подымается, движимый крутящим моментом, и сжимает топливную смесь. (В этот момент под поршнем происходит следующий такт впуска).
Рабочий ход
На вершине такта свеча зажигания воспламеняет топливную смесь. Возникшая энергия заставляет поршень двигаться вниз до завершения цикла. (В этот момент внизу цилиндра топливо сжимается в кривошипной камере).
Четырёхтактный дизельный двигатель
Особенностью дизельного двигателя является измененная система воспламенения топлива. Создав свой тип двигателя в 1897 Рудольф Дизель заявил, что его двигатель является самым эффективным из когда-либо созданных. До сих пор его детище стоит в ряду самых экономичных двигателей.
Впуск
Впускной клапан открывается и свежий воздух (без топлива), засасывается в цилиндр.
Сжатие
Когда поршень подымается, воздух сжимается и температура в цилиндре возрастает. В конце такта воздух раскаляется настолько, что температуры становится достаточно дря воспламенения топлива
Впрыск
Возле вершины такта сжатия топливный инжектор впрыскивает топливо в цилиндр. При контакте с горячим воздухом топливо воспламеняется.
Рабочий ход
При сгорании топлива высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз.
Выпуск
Выпускной клапан открывается, заставляя выхлопные газы покинуть цилиндр.
Роторно-поршневой двигатель внутреннего сгорания (двигатель Ванкеля)
Роторно-поршневой двигатель Ванкеля удивительное творение, предлагающее очень замысловатую перепланировку четырех тактов Отто-цикла. Был разработан Феликсом Ванкелем в 50-х годах прошлого века. В двигателе Ванкеля трехгранный ротор с кольцевой шестернью вращается вокруг фиксированого зубчатого вала в продолговатой камере.
В наше время наибольшие усилия по разработке и популяризации данного типа двигателя прилагает Mazda, но все же четерыхтактный двигатель остается наиболее популярным. Также АвтоВАЗ использует данный тип двигателя в автожирах.
- Преимущества перед обычными бензиновыми двигателями:
- низкий уровень вибраций. Роторно-поршневой двигатель полностью механически уравновешен, что позволяет повысить комфортность лёгких транспортных средств типа микроавтомобилей, мотокаров и юникаров
- главным преимуществом роторно-поршневого двигателя являются отличные динамические характеристики: на низкой передаче возможно без излишней нагрузки на двигатель разогнать машину выше 100 км/ч на более высоких оборотах двигателя (8000 об/мин и более), чем в случае конструкции обычного поршневого двигателя внутреннего сгорания.
- Высокая удельная мощность(л.с./кг), причины:
- меньшие в 1,5-2 раза габаритные размеры.
- меньшее на 35-40 % число деталей
- Недостатки:
- Быстрый износ
- Склонности к перегреву
- Сложность в производстве
- Меньшая экономичность при низких оборотах
Впуск
Воздушно-топливная смесь попадает через впускной клапан на этом этапе вращения.
Сжатие
Топливная смесь сжимается здесь.
Рабочий ход
Рабочий ход, топливная смесь воспламеняется здесь, вращая ротор по кругу.
Выпуск
Выхлопные газы выходят здесь
Двигатель на CO2
Этот типа двигателя может приводится в действие паром, но чаще его можно встретить в маленьких моделях самолетов, где он работает на сжатом воздухе или углекислом газу. На этой анимации отображен резервуар с CO2. Сжатый CO2 — это жидкость, которая освобождаясь переходит в газообразное состояние или же другими словами — при нормальных атмосферной температуре и давлении жидкий углекислый газ кипит, следовательно мы не ошибемся если скажем, что данный тип двигателя работает на пару CO2.
Впуск
На вершине цикла поршневой палец давит на шариковый клапан впуская находящийся под большим давлением газ в цилиндр.
Рабочий ход
Газ расширяется двигая поршень вниз
Выпуск
Когда поршень открывается выпускной клапан, находящийся под давлением газ покидает цилиндр.
Окончание
Крутящий момент возвращается поршень наверх, чтобы завершить цикл.
Реактивные двигатели
Ракетные и турбореактивные двигатели, по словам автора, поразительны по своей конструкции, но анимация их работы по его мнению слишком скучна.
Ракетный двигатель
Ракетный двигатель — простейшие из своего семейства, поэтому начнем с него. Для того, что функционировать в открытом космосе ракетные двигатели для своей работы требуют запас кислорода, ровно как и топлива. Кислородно-топливная смесь впрыскивается в камеру сгорания где она беспрерывно сгорает. Газ под большим давлением выходит через сопла, вызывая тягу в обратном направлении. Чтобы опробовать этот принцип самому, надуйте игрушечный шарик и выпустите его из рук — ракетный двигатель работает почти так-же 😉
Турбореактивный двигатель
Турбореактивный двигатель работает по тому-же принципу что и ракетный, с той лишь особенностью, что необходимый для горения кислород он берет из атмосферы. По своей конструкции он наиболее эффективен на больших высотах с разряженным воздухом. Момент схожести: топливо беспрерывно сгорает в камере сгорания как и в ракетном. Расширевшийся газ покидает камеру сгорания через сопла, образуя тягу в обратном направлении.
Отличия: На своем пути из сопла некоторое количество давления газа ипользуется, чтобы раскрутить турбину. Турбина — это серия винтов, соединенныходним валом. Между каждой парой винтов находится статор (направляющий аппарат компрессора). Этот аппарат помогает газу проходить через лопасти винтов более эффективно. Перед двигателем турбинный вал раскручивает компрессор. Компрессор работает схоже с турбиной, только в обратную сторону.
Его функцией является повышение давления воздуха, попадающего в двигатель. Турбина выталкивает воздух, а компрессор засасывает.
Турбовинтовой двигатель
Турбовинтовой двигатель схож турбореактивным, с той лишь особенностью, что газ покидающий камеру сгорания вращает в большей степени турбину, которая в свою очередь вращает винт преед двигателем. Он и создает тягу. Эффективен на малых высотах.
Турбовентиляторный двигатель
Турбовентиляторный двигатель — это что вроде компромисса между турбореактивным и турбовинтовым. Он работает как турбореактивный, но есть одна особенность: турбинный вал вращает внешний вентялятор, который имеет больше лопастей и крутится быстрее пропеллера. Это помогает данному двигателю оставаться эффективным на больших высотах, где воздух рязряжен. Источники:
www.animatedengines.com
- Ultimate Visual Dictionary, DK Publishing Inc., 1999
- Building the Atkinson Cycle Engine, Vincent Gingery, David J Gingery Publishing, 1996
- The Stirling Engine Manual, James G. Rizzo, Camden Miniature Steam Services, 1995
- Modern Locomotive Construction, J. G. A. Meyer, 1892, reprinted by Lindsay Publications Inc., 1994
- Five Hundred and Seven Mechanical Movements, Henry T. Brown, 1896, reprinted by The Astragal Press, 1995
- Model Machines/Replica Steam Models, Marlyn Hadley, Model Machine Co., 1999
- Air Board Technical Notes, RAF Air Board, 1917, reprinted by Camden Miniature Steam Services, 1997
- Internal Fire, Lyle Cummins, Carnot Press, 1976
- Toyota Web site Prius specifications
- Steam and Stirling Engines you can build, book 2, various authors, Village Press, 1994
- Knight’s New American Mechanical Dictionary, Supplement Edward H. Knight, A.M., LL. D., Houghton, Mifflin and Company, 1884
- Thomas Newcomen, The Prehistory of the Steam Engine L. T. C. Rolt, David and Charles Limited, 1963
- An Introduction to Low Temperature Differential Stirling Engines James R. Senft, Moriya Press, 1996
- An Introduction to Stirling Engines James R. Senft, Moriya Press, 1993
UPD: Добавил двигатели Ванкеля и CO2, они мне показались наиболее интересными и практически полезными.
UPD2: Добавил описание целого семейства реактивных двигателей: ракетный, турбореактивный, турбовинтовой, турбовентиляторный. Хабы:
Источник: https://habr.com/ru/post/138370/