Как работает бесконтактная система зажигания?

Содержание

Эволюция систем зажигания, принцип работы

Как работает бесконтактная система зажигания?

Пары бензина, сгорая в цилиндрах двигателя, дают энергию для движения автомобиля. Сам по себе процесс сгорания не начинается, его инициализацию осуществляет система зажигания. С самого начала появления бензиновых моторов это производилось механическим способом. С течением времени у него было выявлено множество недостатков и замечаний в работе, в том числе сложность в эксплуатации. Появление электронных компонентов (транзисторов, тиристоров и т.д.) позволило преодолеть эти недостатки, т.к. была создана бесконтактная система зажигания (БСЗ).

Для чего оно нужно и каким бывает

Горючая смесь в цилиндрах двигателя должна воспламеняться в конце второго такта – сжатия, когда поршень располагается в верхнем положении. Здесь смесь находится под самым сильным давлением, и при рабочем ходе поршня будет совершена максимальная работа. Именно в этот момент на свече должна появиться искра, которая и воспламенит горючую смесь.
Для этого служит зажигание. Было разработано несколько различных вариантов, но на автомобиле обычно используется батарейное (контактное) зажигание.

Контактное

Как оно работает, должно быть понятно из описания к приведенному ниже рисунку.

Когда ключ вставлен в замок (Contactor), ток протекает от АКБ (Battery) через бобину или катушку зажигания (Ignition Coil) и контакты прерывателя (Contakt breaker). Этот ток образует магнитное поле, в которое попадает вторичная обмотка Ignition Coil. Когда контакты прерывателя размыкаются, через первичную обмотку прекращается протекание тока, во вторичной обмотке благодаря эффекту самоиндукции создается высоковольтное напряжение, подаваемое через распределитель (Distributor) на нужную свечу (spark plugs).

При поступлении этого напряжения на свечу, образуется искра, от чего воспламеняется топливная смесь. Вот примерно так работает контактная (батарейная) система зажигания (КСЗ). В том виде, как описано выше, она была создана еще для первых автомобилей. Здесь приведен только общий принцип ее работы. На самом деле, даже у старых машин, например, «классика» ВАЗ, дополнительно используется такие устройства, как вакуумный и центробежный регуляторы, дающие возможность изменять момент генерации искры в зависимости от скорости движения и нагрузки на автомобиль.

Недостатки подобной системы

Несмотря на все дополнительные устройства, описанная система зажигания, установленная на автомашины ВАЗ 2107,2016, имеет довольно серьезные недостатки. Из них следует отметить:

  1. Протекание значительного по величине тока через прерыватель, что вызывает подгорание его контактов, следствием чего будет увеличение между ними зазора. Из-за этого изменяется угол опережения зажигания (УОЗ), ухудшается пуск двигателя, снижается его мощность и экономичность. Кроме того, другие значения УОЗ могут вызвать перебои в работе мотора при повышенных оборотах (высокой скорости). Чтобы избежать этого, необходимо проводить регулярное техническое обслуживание системы.
  2. У катушки первичная обмотка входит в цепь, содержащую контакты, ограничивающие величину протекающего через них тока, что сказывается на его значении во вторичной цепи и приводит к ограничению энергии искры.
  3. При высокой скорости движения возникает так называемый «дребезг» контактов, что означает их неоднократное размыкание-замыкание, что опять же отрицательно сказывается на работе зажигания.

Тем не менее, из-за своей дешевизны и простоты КСЗ использовалась долгое время, в частности, на машинах семейства ВАЗ 2107, 2106.

Дальнейшее развитие системы зажигания

Вышеописанные трудности удалось решить с широким распространением полупроводниковых элементов, таких как транзисторы и тиристоры. Итогом их применения стала так называемая бесконтактная система зажигания. Однако ее внедрение на отечественные автомобили произошло не сразу, сначала на ВАЗ 2107, 2106 было использовано так называемое контактно-транзисторное зажигание.

Контактно-транзисторное зажигание

Функциональную схему такой системы можно увидеть ниже.

Из рисунка становится понятно, что механический прерыватель управляет не накопителем энергии, в роли которого выступает катушка зажигания, а электронным коммутатором. Такое решение облегчило режимы работы прерывателя, повысило надежность и качество работы всей системы. Кроме того, это позволило модернизировать многочисленные автомашины ВАЗ 2107, 2106, находящиеся в эксплуатации, без значительных затрат со стороны их владельцев.

Бесконтактная система зажигания

Следующим этапом в развитии системы стало исключение механического прерывателя. Бесконтактная система зажигания такого типа показана на рисунке.
Впервые в отечественном автомобилестроении подобная система была внедрена на автомобилях ВАЗ девятого семейства, хотя потом с ней серийно выпускались и ВАЗ 2107, 2106.

Такая бесконтактная система подразумевает использование коммутатора для управления катушкой зажигания и предусматривает работу коммутатора с сигналами, получаемыми от бесконтактного датчика. Последние могут быть трех типов:

  • индуктивный;
  • датчик Холла (магнитный);
  • оптический.

В отечественных машинах семейства ВАЗ 2107, 2106 используется датчик Холла.
Работа такого устройства мало чем отличается от работы обычной КСЗ. Вращение вала двигателя бесконтактный датчик преобразует в импульсы, поступающие на коммутатор напряжения. Последний обеспечивает импульсное прохождение тока через бобину. Благодаря этому во вторичной цепи возникает высоковольтное напряжение, поступающее через распределитель на свечи зажигания, между электродами возникает искра и от нее воспламеняется горючая смесь.

В процессе работы происходит регулирование УОЗ. Для этого используется центробежный (при изменении оборотов двигателя) и вакуумный (при изменении нагрузки) регуляторы.
Система зажигания, установленная на автомобиле, предназначена для своевременного воспламенения топливной смеси. Первоначально применялась контактная, но затем по мере развития электроники появилась бесконтактная система зажигания.

Конечно, сейчас используются гораздо более сложные, микропроцессорные системы, но и БСЗ сыграла в свое время значительную роль в повышении качества и надежности автомобиля.

Источник: https://znanieavto.ru/fire/beskontaktnaya-sistema-zazhiganiya.html

Электронное зажигание (бесконтактное): схема устройства и особенности работы

Как работает бесконтактная система зажигания?

Бесконтактная система зажигания представляет собой более совершенную систему по сравнению с контактно-транзисторным зажиганием. Основная особенность – вместо контактного прерывателя использован бесконтактный датчик. Другими словами, конструкция прерывателя распределителя исключает наличие контактов. В результате такие системы получили название бесконтактные.

При этом установка бесконтактного зажигания возможна даже на тех автомобилях, где изначально стоит контактная система.  По этой причине данное решение пользуется  большим спросом среди владельцев отечественных авто (например, бесконтактное зажигание ВАЗ). Далее мы рассмотрим,  как устроено и работает зажигание электронное, а также какие преимущества системы зажигания данного типа можно выделить.

Система зажигания: бесконтактное зажигание

Итак, бесконтактная система повышает мощность двигателя, уменьшает расход горючего, снижает токсичность выхлопа и т.д. Это становится возможным благодаря  тому, что разряд отличается более высоким напряжением (30 тысяч вольт.). В свою очередь, мощная искра позволяет смеси сгорать более эффективно и полноценно.

Если иначе, отсутствие контактов позволяет подать ток на первичную обмотку катушки зажигания через полупроводниковый коммутатор,  в результате чего энергия искры больше и удается получить большее напряжение на вторичной обмотке катушки. В среднем,  показатель составляет до 10 кВ;

Также электромагнитный импульсный работает лучше, чем контактная группа. Работа более стабильна  на разных оборотах двигателя, агрегат отдает больше мощности и способен сэкономить до 1.0 литра топлива по сравнению с аналогами, оснащенными контактной системой зажигания.

Еще следует добавить, что обслуживать бесконтактное зажигание проще, так как сбои возникают не часто, а сама система нуждается в обслуживании намного реже. Бесконтактное зажигание не нуждается в чистке и регулировке.

Также для нормальной работы электронного зажигания  требуется меньше энергии АКБ. Это значит, что «с толкача» двигатель удается завести даже тогда, когда аккумулятор сильно разряжен. Дело в том, что после включения зажигания  компоненты практически не потребляют энергию аккумулятора.

Если сравнивать с контактным зажиганием, энергия в этом случае потребляется тогда, когда контакты прерывателя замкнуты, катушка зажигания греется даже при заглушенном моторе. По конструкции бесконтактная система зажигания включает в себя несколько элементов. Если рассматривается схема зажигания данного типа, она включает в себя:

  • питание;
  • выключатель зажигания,
  • датчик импульсов;
  • транзисторный коммутатор; 
  • катушка зажигания;
  • распределитель;
  • свечи зажигания;

Распределитель зажигания соединяется со свечами посредством ВВ – проводов (высоковольтные свечные провода зажигания). На деле, устройство бесконтактной системы зажигания напоминает схему контактного зажигания, однако есть и отдельные элементы (датчик импульсов, транзисторный коммутатор).

  • Начнем с того, что датчик импульсов (импульсный датчик)создает электрические импульсы. Такие импульсы имеют низкое напряжение.  Датчик может быть датчиком Холла, а также индуктивным или оптическим.
Читайте также  Заблокировался руль и замок зажигания что делать?

При этом самым распространенным в бесконтактной системе зажигания является датчик импульсов на эффекте Холла. В двух словах, датчик работает за счет появления поперечного напряжения в пластине проводника с электрическим током под действием магнитного поля.

  • Сам датчик Холла включает в себя постоянный магнит, полупроводниковую пластину с микросхемой, а также металлический экран с особыми прорезями. Через прорези в экране проходит магнитное поле, в полупроводниковой пластине возникает напряжение.

Также экран не позволяет магнитному полю проникать постоянно, в результате чего нет напряжения на полупроводниковой пластине. Получается, благодаря чередованию прорезей в экране создаются импульсы низкого напряжения.

https://www.youtube.com/watch?v=6M5ac0kz9UA

Импульсный датчик соединен с распределителем, образуя  единый датчик-распределитель. Датчик напоминает прерыватель-распределитель, приводится в действие от коленвала ДВС.

  • Еще одним элементом является транзисторный коммутатор. Данный элемент необходим для того, чтобы прерывать ток в цепи первичной обмотки катушки зажигания.

Прерывание осуществляется благодаря сигналам импульсного датчика (за счет чередующегося отпирания, а также запирания выходного транзистора).

Бесконтактная система зажигания: принцип работы

Рассмотрев устройство и составные элементы, можно перейти к тому, как работает бесконтактное зажигание. Прежде всего, когда вращается коленвал двигателя, происходит формирование импульсов напряжения от датчика-распределителя. Импульсы передаются на транзисторный коммутатор.

В свою очередь, коммутатор формирует импульсы тока в цепи первичной обмотки катушки зажигания. В тот момент, когда происходит прерывание тока, осуществляется индуцирование тока высокого напряжения на вторичной обмотке катушки.

Далее ток высокого напряжения поступает на центральный контакт распределителя, после чего перераспределяется с учетом порядка работы цилиндров по ВВ-проводам на свечи зажигания. На свечах образуется искра зажигания, которая воспламеняет рабочую топливно-воздушную смесь в цилиндрах.

Когда обороты коленвала увеличиваются, происходит регулировка УОЗ (угол опережения зажигания) за счет центробежного регулятора опережения зажигания. Если меняется нагрузка на мотор, угол опережения зажигания меняется за счет вакуумного регулятора опережения зажигания.

Неисправности  бесконтактной системы зажигания: признаки и причины

Как и любое другое решение, бесконтактная система зажигания имеет как плюсы, так и минусы. Среди основных недостатков можно выделить то, что надежность некоторых составных элементов (особенно при условии использования дешевых аналогов) может быть низкой.

Само собой, неисправности системы зажигания сразу сказываются на работе двигателя. При этом важно обращать внимание на такие признаки:

  • Запуск двигателя затруднен или невозможен (вероятны проблемы со свечами, ВВ-проводами, катушкой зажигания и т.д.);
  • Также на сбои в системе зажигания указывает то, что на холостом ходу мотор работает нестабильно. Это может быть вызвано пробоями в крышке датчика-распределителя, неисправностями транзисторного коммутатора или самого датчика-распределителя;
  • Отмечен большой расход бензина, падение мощности двигателя, пропуски зажигания и т.д. В этом случае может быть поломка центробежного регулятора опережения зажигания, сбои в работе вакуумного регулятора опережения зажигания и т.д.

Также добавим, что бесконтактная система традиционно имеет слабые места. Это в полной мере касается коммутаторов, особенно старого образца. Еще может подводить катушка. 

Рекомендуем также прочитать статью о том, как определить, ранее или позднее зажигание. Из этой статьи вы узнаете, по каким признакам можно понять, что зажигании ранее или позднее, какие симптомы указывают на сбои в работе системы зажигания и т.д.

На практике, нужно приобретать модифицированный коммутатор, а также лучше изделие иностранного производства. Такое решение «ходит» дольше, но и его срок службы, к сожалению, в отдельных случаях может оказаться не большим. 

В любом случае, неисправности бесконтактной системы зажигания могут также быть связаны со свечами зажигания, встречаются  нарушения в области соединений низковольтной и высоковольтной цепей, обрывы проводов, окисления контактов, плохое соединение. Для более продвинутых электронных систем еще можно добавить проблемы с ЭБУ, выход из строя отдельных датчиков.

Так или иначе, важно понимать, что использование элементов системы зажигания низкого качества вполне может привести к проблемам. Например, установка  неподходящих или проблемных свечей зажигания, несвоевременная их замена, использование дешевых катушек зажигания или неисправных высоковольтных проводов может влиять на исправность и состояние других элементов системы и на работу ДВС в целом.

Также нельзя исключать и воздействие других факторов (повреждения, попадание жидкостей, окисление и т.п.). Например, при мойке двигателя элементы системы зажигания нужно отдельно изолировать, в процессе эксплуатации автомобиля не допускается активное скопление влаги и т.п.

Что в итоге

Как видно, если сравнивать контактную и бесконтактную систему зажигания, именно второй вариант работает лучше. Также такую систему не нужно регулировать и настраивать, то есть отпадает вопрос, как выставить зажигание. Причина — обслуживание сведено к минимуму.

Однако не следует полагать, что замена контактной системы зажигания на бесконтактную всегда будет означать, что такое решение намного более надежно. Дело в том, что хорошо и долго работают только импортные системы, которые состоят из дорогих комплектующих.

Если же приобретается электронное зажигание на ВАЗ, желательно подбирать все составные элементы хорошего качества, то есть не следует спешить купить бесконтактное зажигание комплектом по самой низкой цене. Как правило, нужно отдельно остановиться на качестве и надежности компонентов в таких комплектах.

Источник: http://krutimotor.ru/elektronnoe-zazhiganie-beskontaktnoe-ustrojstvo-printsip-raboty/

Устройство автомобилей

Как работает бесконтактная система зажигания?



Дальнейшим шагом в развитии систем зажигания индуктивного типа было создание бесконтактных систем, в которых конструкторы полностью отказались от разрыва электрической цепи первичной обмотки катушки зажигания механическим способом.

Функцию генерирования управляющего сигнала на базу транзистора передали магнитоэлектрическому датчику, использующему в своей работе принцип, основанный на эффекте Холла.

Отказ от механических контактов позволил существенно повысить надежность и стабильность работы системы зажигания, поэтому они быстро вытеснили контактные и контактно-транзисторные системы, применявшиеся на автомобильных двигателях.

На рисунке 1 представлена схема системы зажигания с магнитоэлектрическим генераторным датчиком, предназначенная для восьмицилиндровых двигателей. Она содержит электронный коммутатор, датчик распределитель, добавочный резистор и катушку зажигания.
Магнитоэлектрический датчик конструктивно объединён с высоковольтным распределителем.

Работает бесконтактная система зажигания (БСЗ) следующим образом (рис. 1).
При включенном выключателе 5 и неработающем двигателе транзистор VT1 (К.Т630Б) закрыт, так как его база и эмиттер имеют одинаковый потенциал.
При закрытом транзисторе VT1 потенциал базы транзистора VT2 (К.Т630Б) выше потенциала эмиттера.

По переходу база-эмиттер протекает ток управления по цепи:

положительный вывод аккумуляторной батареи — контакты выключателя зажигания — положительный вывод добавочного резистора — положительный вывод коммутатора — дроссель-диод VD6 — резисторы R5 и R6 — переход база-эмиттер транзистора VT2 — резисторы R10 и R11 — корпус автомобиля — отрицательный вывод аккумуляторной батареи.

Ток управления открывает транзистор VT2, что в свою очередь приводит к появлению тока управления транзистора VT3 (К.Т809А), открывается транзистор VT4 (КТ808А). При этом через коллектор-эмиттер транзистора VT4 пойдет ток по цепи:
положительный вывод аккумуляторной батареи — контакты выключателя зажигания — добавочный резистор — первичная обмотка катушки зажигания — диод VD7 — коллектор-эмиттер транзистора VT4 — «масса» — отрицательный вывод аккумуляторной батареи.
При этом в магнитном поле катушки зажигания накапливается электромагнитная энергия.

При прокручивании коленчатого вала двигателя стартером в магнитоэлектрическом датчике вырабатывается переменное напряжение, которое поступает на вывод «Д» коммутатора. С вывода «Д» сигнал датчика через диод VD1 (КД102А) и цепь R1C3 поступает на базу транзистора VT1.
Диод VD1 пропускает с датчика импульсы только положительной полярности.
Цепь R1C3 служит для исключения электрического угла опережения зажигания, присущего магнитоэлектрическим датчикам при изменении частоты вращения.

Поступивший на базу транзистора VT1 положительный импульс вызывает увеличение потенциала базы относительно эмиттера. В результате в транзисторе VT1 будет протекать ток управления по цепи:
обмотка датчика — диод VD1 — цепь R1C3 — переход база-эмиттер транзистора VT1 — «масса» — обмотка датчика.
Транзистор VT1 откроется и зашунтирует переход база-эмиттер транзистора VT2, что вызовет закрытие транзистора VT2, а затем и закрытие транзисторов VТЗ и VT4.

Запирание транзистора VT4 приводит к резкому прекращению первичного тока в катушке зажигания и возникновению высокого напряжения во вторичной обмотке катушки зажигания, которое через распределитель подводится к соответствующей свече зажигания.
Затем после исчезновения импульса с датчика транзистор VT1 закроется, а транзисторы VT2, VT3 и VT4 откроются, и в магнитном поле катушки зажигания будет опять накапливаться электромагнитная энергия.

Транзисторный коммутатор содержит целый ряд дополнительных элементов, служащих для защиты и улучшения условий работы схемы. Стабилитрон VD5 (КС980А) и конденсатор С7 защищают схему от напряжения, индуктируемого в первичной обмотке катушки зажигания.

Диод VD3 (КД102А) ограничивает амплитуду импульса с датчика и, таким образом, защищает переход база-эмиттер транзистора VT1 от пробоя.
Диод VD7 защищает транзистор VT4 от обратной полярности источника питания.

Конденсатор С6 и резистор R7 образуют цепь обратной связи, по которой положительная полуволна ЭДС самоиндукции с первичной обмотки катушки зажигания поступает на базу транзистора VT1, ускоряя его отпирание, что способствует обеспечению бесперебойности искрообразования на низких частотах вращения.



Читайте также  Порядок зажигания восьмицилиндрового двигателя

Конденсаторы С4 и С5 защищают переходы база-эмиттер транзисторов VT2 и VT3 от всплесков напряжения и исключают ложные срабатывания транзисторов VT2 и VT3. Резисторы R8, R10 и R11, включенные между эмиттерами и базами транзисторов VT2, VT3 и VT4, служат для повышения предельно допустимого напряжения между коллектором и эмиттером транзисторов.

Резистор R12 и конденсатор С8 уменьшают мощность, выделяемую в транзисторе VT4 при его закрытии, во время переходного процесса. Конденсаторы С1 и С2 и дроссель уменьшают пульсации напряжения в цепи питания коммутатора, а диод VD6 (КД212Б) защищает от обратной полярности.

Защита транзисторного коммутатора от перенапряжений питания осуществляется схемой, состоящей из стабилитрона VD2 (КС515А), стабилитрона VD4 (КС119А) и резисторов R2 и R3.
При повышении напряжения питания до 18 В напряжение на стабилитроне VD2 будет больше напряжения стабилизации и на базу транзистора VT1 поступит положительное смещение относительно эмиттера. Независимо от импульсов датчика транзистор VT1 откроется, а транзисторы VT2, VT3 и VT4 закроются, и двигатель остановится.

Транзисторный коммутатор 13.3734 размещен в ребристом корпусе, отлитом из алюминия (см. рисунок вверху страницы).
Коммутатор имеет три вывода:

  • вывод «Д» — для соединения с низковольтным выводом датчика-распределителя;
  • вывод «КЗ» — для соединения с выводом катушки зажигания;
  • вывод «+» — для соединения с выводом «+» добавочного резистора.

Катушка зажигания Б116 выполнена с электрически разделенными обмотками, как и катушка Б114 для контактно-транзисторной системы зажигания, и отличается от последней обмоточными параметрами.
Добавочный резистор 14.3729 состоит из двух нихромовых спиралей, которые размещены в металлическом корпусе. Выводы, к которым присоединены концы спиралей, имеют маркировку «+», «С», «К». Величина сопротивления спирали между выводами «С» и «+» составляет 0,71 Ом, а спирали между выводами «С» и «К» — 0,52 Ом.

Датчик-распределитель 24.3706 (на схеме рис. 1) предназначен для управления работой транзисторного коммутатора, распределения импульсов высокого напряжения по свечам зажигания в необходимой последовательности, для автоматического регулирования момента искрообразования в зависимости от частоты вращения коленчатого вала и нагрузки двигателя.

***

Дальнейшее развитие системы питания бензиновых двигателей связано с широким внедрением компьютерных технологий. Последним словом техники в этом плане являются микропроцессорные системы зажигания, управляемые бортовым компьютером автомобиля.

Электронный блок управления (ЭБУ), собирающий информацию от многочисленных датчиков, позволяет эффективно управлять не только системой зажигания, но и другими системами двигателя — питания, охлаждения, контроля над отработавшими газами.
Комплексное управление работой двигателя позволило максимально использовать экономические и динамические свойства двигателя при соблюдении установленных экологических норм.

Ведутся работы и над повышением эффективности системы зажигания путем внедрения многокатушечных модуляторов высокого напряжения, а также в других перспективных направлениях.

***

Свечи зажигания



Дистанционное образование

  • Группа ТО-81
  • Группа М-81
  • Группа ТО-71

Олимпиады и тесты

Источник: http://k-a-t.ru/mdk.01.01_elektro/34-zajiganie/index.shtml

Устройство КШМ

Как работает бесконтактная система зажигания?

 КШМ ВАЗ 2110, 2111, 2112Основные размеры КШМ ВАЗ 2110, 2111, 2112показаны на рисунке. Хорошо зарекомендовалисебя двигателя ВАЗ 2110, они имеют многовзаимозаменяемых деталей КШМ с двигателямиВАЗ 2108, ВАЗ 2109

Кривошипно-шатунный механизм (КШМ) преобразует прямолинейное возвратно-поступательные движения поршней, воспринимающих давление газов, во вращательное движение коленчатого вала.

Устройство КШМ можно разделить на две группы: подвижные и неподвижные.

Подвижные детали: 

поршень, поршневые кольца, поршневые пальцы и шатуны, коленчатый вал, маховик.

Неподвижные детали:

Блок-картер, головка блока цилиндров, гильзы цилиндров. Имеются также фиксирующие и крепежные детали.

Поршневая группа

Поршневая группа включает в себя поршень, поршневые кольца, поршневой палец с фиксирующими деталями. Поршень воспринимает усилие расширяющихся газов при рабочем ходе и передает ею через шатун па кривошип коленчатого вала; осуществляет подготовительные такты; уплотняет над поршневую полость цилиндра как от прорыва газов в картер, так и от излишнего проникновения в нее смазочного материала.

Коренные подшипники

Для коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы.

Маховик

Маховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала в течение подготовительных тактов, и вывода деталей КШМ из ВМТ (верхней мертвой точки) и НВТ (нижней мертвой точки).
В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.

Маховики отливают из чугуна в виде лиска с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом. На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером.

На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия.

Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.

Поршни

Форма и конструкция поршня, включая днище поршня и отверстие под поршневой палец, в значительной степени определяются формой камеры сгорания.

 Устройство шатунаШатун необходим для соединения поршня с коленчатым валом и передачи усилия от поршня к коленчатому валу

Устройство КШМ автомобиля. 

1 — стопорное кольцо, 2 — поршневой палец, 3 — маслосьемные кольца, 4 — компрессионные кольца, 5 — камера сгорания, 6 — днище поршня, 7 — головка поршня:     8 — юбка поршня;  9 —  поршень: 10 — форсунка; 11- шатун; 12  — вкладыш;  13 — шайба , 14 — длинный болт; 15 — короткий болт; 16 — крышка шатуна, 17  —  втулка шатуна;  18 — номер на шатуне; 19 — метка на крышке шатуна; 20 —  шатунный болт.

Поршень состоит из головки поршня и направляющей части — юбки поршня. С внутренней стороны имеются приливы — бобышки с гладкими отверстиями под поршневой палец. Для фиксации пальца в отверстиях проточены канавки под стопорные кольца. В зоне выхода отверстий на внешних стенках юбки выполняются местные углубления, где стенки юбки не соприкасаются со стенками цилиндров. Таким образом получаются так называемые холодильники. Для снижения температуры нагрева направляющей поршня в карбюраторных двигателях головку поршня отделяют две поперечные симметричные прорези, которые препятствуют отводу теплоты от днища.

Нагрев, а следовательно, и тепловое расширение поршня по высоте неравномерны. Поэтому поршни выполняют в виде конуса овального сечения. Головка поршня имеет диаметр меньше, чем направляющая. В быстроходных двигателях, особенно при применении коротких шатунов, скорость изменения боковой силы довольно значительна. Это приводит к удару поршня о цилиндр. Чтобы избежать стуков, при перекладке поршневые пальцы смещают на 1,4—1,6 мм в сторону действия максимальной боковой силы, что приводит к более плавной перекладке и снижению уровня шума.

Головка поршня состоит из днища и образующих ее стенок, в которых именно канавки под поршневые кольца. В нижней канавке находятся дренажные отверстия для отвода масла диаметром 2,5—3 мм. Днище головки является одной из стенок камеры сгорания и воспринимает давление газов, омывается открытым пламенем и горячими газами. Для увеличения прочности днища и повышения обшей жесткости головки се стенки выполняются с массивными ребрами. Днища поршней изготовляют плоскими, выпуклыми, вогнутыми и фигурными. Форма выбирается с учетом типа двигателя, камеры сгорания, процесса смесеобразования и технологии изготовления поршней.

Поршневые кольца

Поршневые кольца — элементы уплотнения поршневой группы, обеспечивающие герметичность рабочей полости цилиндра и отвод теплоты от головки поршня.

По назначению кольца подразделяются на:

Компрессионные кольца — препятствующие прорыву газов в картер и отводу теплоты в стенки цилиндра.

Маслосъемные кольца — обеспечивающие равномерное распределение масла по поверхности цилиндра и препятствующие проникновению масла в камеру сгорания.

Изготовляются кольца из специальною легированною чугуна или стали. Разрез кольца, называемый замком, может быть прямым, косым или ступенчатым. По форме и конструкции поршневые кольца дизелей делятся на трапециевидные, с конической поверхностью, и подрезом, маслосъемные, пружинящие с расширителем; поршневые кольца карбюраторных двигателей — на бочкообразные, с конической поверхностью со скосом, с подрезом; маслосьемные — с дренажными отверстиями и узкой перемычкой, составные предсталяют собой два стальных лиска (осевой и радиальный расширители).

Читайте также  Свечи зажигания диагностика по нагару

Составное маслосъемное поршневое кольцо (а) и его установка в головке поршня двигателя: 1 — дискообразное кольцо; 2 — осевой расширитель; 3 — радиальный расширитель; 4— замок кольца; 5 — компрессионные кольца; 6 — поршень; 7 — отверстие в канавке маслосъемного кольца.

Для повышения износостойкости первого компрессионного кольца, работающего и условиях высоких температур  и граничного трения, его поверхность покрывают пористым хромом. Устанавливая на поршень поршневые кольца, необходимо следить за тем, чтобы замки соседних колец были смещены один относительно другого на некоторый угол (90 —180 градусов).Поршневой палец обеспечивает шарнирное соединение шатуна с поршнем. Поршневые пальцы изготовляют из малоуглеродистых сталей. Рабочую поверхность тщательно обрабатывают и шлифуют. Для уменьшения массы палец выполняют пустотелым. Установка поршневого пальца
Шатун шарнирно соединяет поршень с кривошипом коленчатого вала. Он воспринимает от поршня и передает коленчатому валу усилие давления газов при рабочем ходе, обеспечивает перемещение поршней при совершении вспомогательных тактов. Шатун работает в условиях значительных нагрузок действующих по его продольной оси.Шатун состоит из верхней головки, в которой имеется гладкое отверстие под подшипник поршневого пальца; стержня двутаврового сечения и нижней головки с разъемным отверстием для крепления с шатунной шейкой коленчатого вата. Крышка нижней головки крепится с помощью шатунных болтов. Шатун изготавливают методом гарячей штамповки из высокочественной стали. Для более подробного изучения создан раздел «Устройство шатуна«. Устройство шатуна

Для смазывания подшипника поршневого пальца (бронзовая втулка) в верхней головке шатуна имеются отверстие или прорези. В двигателях марки «ЯМЗ» подшипник смазывается под давлением, для чего в стержне шатуна имеется масляный канал. Плоскость разъема нижней головки шатуна может располагаться под различными углами к продольной оси шатуна.

Наибольшее распространение получили шатуны с разъемом перпендикулярным к оси стержня, В двигателях марки «ЯМЗ» имеющим больший диаметр,  чем диаметр цилиндра, pазмер нижней головки шатуна, выполнен косой разъем нижней головки, так как при прямом разъеме монтаж шатуна через цилиндр при сборке двигателя становится невозможным. Для подвода масла к стенкам цилиндра на нижней головке шатуна имеется отверстие.

 С целью уменьшения трения и изнашивания в нижние головки шатунов устанавливают подшипники скольжения, состоящие из двух взаимозаменяемых вкладышей (верхнего и нижнею).

Источник: https://www.autoezda.com/electr/бесконтактная-система-зажигания.html

Бесконтактная система зажигания

Как работает бесконтактная система зажигания?

В предлагаемой вашему вниманию статье мы еще раз поговорим о тюнинге силовой установки автомобилей, произведенных Волжским автозаводом. Он затрагивает систему зажигания, без преувеличения являющуюся одной из основных систем любого автомобиля. Мы предлагаем вам не только понять, что представляет бесконтактная система зажигания «ВАЗ 2106», но и ознакомиться с инструкцией по ее практической установке.

Преимущества бесконтактной системы зажигания   

Подавляющее большинство «шестерок», выпущенных в 70-90-х годах прошлого столетия, оснащены системой зажигания механического типа, основным рабочим элементом которой служил кулачек. Однако любой механизм подвержен воздействию многочисленных внешних факторов: истирание, деформация, механические повреждения и т.д.

Проблемы штатной системы зажигания создает, как правило, контактная группа прерывателя.

Это и преждевременный износ кулачка прерывателя, ослабление пружины подвижного контакта, окисление и повышенная вибрация контактов, небольшой эксплуатационный срок опорного подшипника, обусловленный присутствием серьезных механических нагрузок.

Кроме того, этот тип зажигания предполагает регулярное проведение регулировок и технического обслуживания. 

Главное преимущество данного решения заключается в том, что установка бесконтактного зажигания «ВАЗ 2106» предполагает функционирование фотоэлемента, то есть оптики. Благодаря этому фактору значительно облегчается запуск силового агрегата в условиях низких температур, поскольку бесконтактная система позволяет генерировать достаточно мощную искру и обеспечивает более точное размыкание цепи. К тому же, управление автомобилем с бесконтактной системой зажигания (далее по тексту БСЗ), не предполагает приобретение водителем специальных навыков и дополнительных знаний.

Приобретая БСЗ, следует учесть следующие моменты:

  • Соответствие модели трамблера мощности двигателя.
  • Наличие свечей зажигания, способных генерировать искру большой мощности, и комплекта проводов высокого напряжения.

Прежде чем мы поговорим об установке БСЗ на транспортное средство, разберем принципиальное устройство данной системы. Функцию прерывателя, размыкающего цепь низкого напряжения в механической системе зажигания, в БСЖ выполняет электронный коммутатор. Он замыкает (размыкает) цепь, запирая или отпирая выходной транзистор. Бесконтактная система не только повышает напряжение на электродах свечи, увеличивая энергию искрового разряда, но и сохраняет его (напряжения) уровень даже на малых оборотах силовой установки, что значительно улучшает условия ее пуска.

Катушка зажигания, адаптированная к использованию в составе БСЗ преобразовывает прерывистый ток низкого напряжения (12 Вольт) в ток более высокого (до 20 киловольт) напряжения, что обуславливает наличие между электродами свечей, так называемого «пробоя воздушного зазора».

Установка бесконтактного зажигания на «ВАЗ 2106»

Процесс установки БСЗ включает выполнение следующих мероприятий:

  • Демонтируем старую крышку трамблера и штатные провода высоковольтного напряжения. 
  • При помощи стартера устанавливаем бегунок в положение, соответствующее верхней мертвой точке первого цилиндра.
  • Проверяем расположение клемм катушки.
  • Высоковольтный провод катушки вставляем в трамблер.
  • Провода коричневого и зеленого цвета, оставшиеся от штатного трамблера, подсоединяем к катушке. С клеммой, маркированной «Б», соединяем зеленый и синий с полоской провода, а с клеммой, маркированной «Л», соединяем провода сиреневого и коричневого цвета.
  • Устанавливаем на штатное место новый трамблер и устанавливаем бегунок в первоначальное положение.
  • Совмещаем метки, нанесенные на трамблере и блоке цилиндров.
  • Производим полную замену свечей зажигания.
  • Устанавливаем крышку трамблера и подключаем высоковольтные провода в соответствии со схемой очередности работы цилиндров. 
  • Подключаем провода к контактам свечей зажигания.
  • Центральный провод катушки зажигания стыкуем с соответствующим контактом крышки трамблера. 
  • Установка бесконтактного зажигания на «ВАЗ 2106» завершена. 

Финальным аккордом процесса установки БСЗ служит регулировка зажигания, включающая в себя следующие технологические операции:

  • Регулировка величины угла между контактами, находящимися в замкнутом состоянии.
  • Корректировка величины угла опережения зажигания.
  • Контрольная проверка полученных результатов в процессе езды.

Основными показателями, которыми характеризуется правильно отрегулированная бесконтактная система зажигания «ВАЗ 2106», специалисты считают:

— четкая работа силового агрегата (отсутствие сбоев, ровный набор скорости без рывков и провалов, стабильность оборотов);- уменьшение шума работы двигателя;

— снижение расхода топлива.  

Источник: https://vipwash.ru/sistema-zazhiganiya/beskontaktnaya-sistema-zazhiganiya-vaz-2106

Системы зажигания: от простой к лучшей!

Как работает бесконтактная система зажигания?

Система зажигания является неотъемлемым атрибутом любого бензинового или газового двигателя. При всем многообразии технических нюансов в данном вопросе, все системы зажигания с динамическим распределением подаваемого напряжения можно разделить на контактные и бесконтактные. Нижеследующая статья посвящена их основным особенностям, а также причинам возникновения систем со статическим распределением напряжения (электронное зажигание).

Работа современных ДВС основана на сгорании топлива. В дизельных двигателях оно воспламеняется за счет сжатия, в бензиновых и газовых силовых агрегатах, а именно о них пойдет речь в последующем — посредством подведения к топливно-воздушной смеси искры высокого напряжения через свечи зажигания.

Топливо может загореться только при прохождении в зазоре свечи достаточно большого напряжения (от 2 до 30 кВ). Для обеспечения тока с таким высоким напряжением используется катушка зажигания, представляющие собой, по сути, повышающий трансформатор.

Основными элементами катушки зажигания являются сердечник и две обмотки — первичная и вторичная. Первичная обмотка запитывается от бортовой сети 12 В и предназначается для создания магнитного поля. В момент, когда на первичную обмотку перестает поступать ток, магнитное поле исчезает, причем происходит это настолько быстро, что при пересечении данным магнитным полем витков вторичной обмотки в ней индуцируется ток с очень высоким напряжением.

После того, как необходимое для воспламенения топлива напряжение было создано, его необходимо подать в цилиндры. Причем для обеспечения высокой эффективности и экономичности топливо должно загораться в определенный момент времени, а значит, искра должна подаваться одновременно не во все цилиндры. Именно в обеспечении данного базового принципа и проявляются различия между контактной и бесконтактной системами зажигания.

Контактная система зажигания

Контактная система зажигания включает следующие компоненты:

— Свечи зажигания;
— Источник электроэнергии: при включении автомобиля — аккумулятор, в нормальном режиме работы — генератор;
— Катушка зажигания;
— Высоковольтные и низковольтные провода; — Прерыватель;

— Распределитель зажигания.

Прерыватель и распределитель зажигания объединяются в корпусе единого устройства, которое в народе получило название «трамблер».

Ключевой особенностью контактной системы является распределитель зажигания. Это механическое устройство определяет, на какую из свеч в данный момент времени будет подано напряжение.

Подобная организация распределения напряжения максимально проста, а значит, достаточно надежна, но в то же время обладает рядом существенных недостатков. Механическое распределение напряжения накладывает довольно существенные ограничения на мощность искры, т.к. с увеличением данного параметра стремительно ускоряется тепловой износ контактов. Кроме того, при работе двигателя на высоких оборотах контактная группа начинает «дребезжать», что на порядок снижает эффективность коммутации.